Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

The monoclinic polymorph of dimethylarsinic acid

Richard Betz,* Cedric McCleland and Harold Marchand

Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
Correspondence e-mail: richard.betz@webmail.co.za
Received 21 June 2011; accepted 28 June 2011
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma($ As-C $)=0.003 \AA$; R factor $=0.020 ; w R$ factor $=0.055$; data-to-parameter ratio $=23.8$.

The title compound, $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{AsO}_{2}$ or $\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(\mathrm{OH})\right]$, is an organic derivative of arsinic acid, and is also known by its trivial name cacodylic acid. In contrast to the first polymorph (triclinic, space group $P \overline{1}, Z=2$), the current study revealed monoclinic symmetry (space group $C 2 / c, Z=8$) for the second polymorph. The configuration of the tetrahedral molecule shows approximate C_{s} symmetry. Strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds connect the molecules to infinite zigzag chains along [010], which are further connected by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts into a three-dimensional network.

Related literature

For the crystal structure of the triclinic polymorph of the title compound, see: Trotter \& Zobel (1965). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental

Crystal data
$\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(\mathrm{OH})\right]$
$M_{r}=138.00$
Monoclinic, C2/c
$a=15.764$ (9) A
$b=6.494$ (5) A
$c=11.302$ (4) \AA
$\beta=125.86(3)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\text {min }}=0.608, T_{\text {max }}=1.000$
7792 measured reflections 1166 independent reflections
1117 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.040$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$

49 parameters

$w R\left(F^{2}\right)=0.055$
$S=1.20$
H -atom parameters constrained
1166 reflections
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.80 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{As} 1-\mathrm{O} 2$	$1.6617(19)$	$\mathrm{As} 1-\mathrm{C} 2$	$1.895(2)$
$\mathrm{As} 1-\mathrm{O} 1$	$1.7201(19)$	$\mathrm{As} 1-\mathrm{C} 1$	$1.895(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.84	1.69	2.528 (2)	172
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\text {ii }}$	0.98	2.52	3.481 (3)	167
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{\text {iii }}$	0.98	2.48	3.354 (3)	148
Symmetry codes: $-x+1,-y+1,-$	$\begin{equation*} -x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ; \tag{ii} \end{equation*}$			

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

The authors thank Mr Eric Bashman for helpful discussions.

[^0]
References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2008). SADABS. Bruker Inc., Madison, Wisconsin, USA.
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Trotter, J. \& Zobel, T. (1965). J. Chem. Soc. pp. 4466-4471.

supplementary materials

The monoclinic polymorph of dimethylarsinic acid

R. Betz, C. McCleland and H. Marchand

Comment

The precipitation of amines from their respective organic synthesis mixtures as the ammonium salts of inorganic acids is a common practice for obtaining and purifying the desired products. However, for a couple of higher-alkylated amines, the viability of this class of compounds as phase-transfer catalysts becomes troublesome with respect to their persistent solubility which is detrimental for achieving quantitative yields following this simple synthetic protocol. Decreasing the solubility of a protonated amine can be done upon variation of the counterion which may allow for a better packing and more pronounced intermolecular interactions in the solid state. Since we intended to perform a comprehensive study involving a variety of higher-alkylated amines, we set out to optimize the yield of several established synthesis procedures by variation of the acid used for precipitation. To allow for a rationalization and tailoring of the counterions to be preferred, we determined the crystal structure of the title compound to enable comparative studies in isolated, crystalline precipitates. The crystal structure of the title compound has been determined previously (Trotter \& Zobel (1965)). However, a different crystal system (triclinic, space group $P \overline{1}, Z=2$) was reported, suggesting that the title compound is polymorphic. Moreover, hydrogen atoms were not included in the previous refinement procedure.

The length of the As-O-bonds show a marked difference with the formal As-O-double bond being shorter by about 0.06 \AA than the corresponding single bond. A projection of both methyl groups along the $\mathrm{C}-\mathrm{C}$-axis shows their hydrogen atoms to adopt an ecliptic conformation (Fig. 1).

In the crystal structure, $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds as well as intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts, whose range falls by about $0.2 \AA$ below the sum of the van-der-Waals radii of the atoms participating, are present. The hydrogen bonds are formed between the H atom of the hydroxyl group as donor and the formally double-bonded oxygen atom and connect the molecules to zigzag chains along [010]. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts are supported by one hydrogen atom per methyl group each as the donor atom. While for one methyl group the double bonded O atom acts as acceptor and gives rise to the formation of centrosymmetric cacodylic acid dimers, the oxygen atom of the hydroxyl group acts as acceptor for the other methyl group. In this case, too, the formation of centrosymmetric cacodylic acid dimers can be observed. In total, the molecules are connected to a three-dimensional network in the crystal structure. In terms of graph-set analysis (Etter et al. (1990); Bernstein et al. (1995)), the descriptor for the classical hydrogen bonds is $C^{1}{ }_{1}(4)$ on the unitary level while both $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts necessitate a $R^{2}{ }_{2}(8)$ descriptor on the same level (Fig. 2).

The packing of the title compound in the crystal structure is shown in Figure 3.

Experimental

The compound was obtained commercially (KEK). Crystals suitable for the X-ray diffraction study were taken directly from the provided product.

supplementary materials

Refinement

The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C -As bonds to best fit the experimental electron density (HFIX 137 in the $S H E L X$ program suite (Sheldrick, 2008)), with $U(\mathrm{H})$ set to $1.5 U_{\mathrm{eq}}(\mathrm{C})$. The H atom of the hydroxyl group was found from a difference Fourier map and allowed to rotate with a fixed angle around the O—As bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), its $U(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{O})$.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at the 50% probability level.

Fig. 2. Intermolecular contacts, viewed along [00 $]$. Blue dashed lines indicate classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, green dashed lines $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts. Symmetry operators: i) $-x+$ $1 / 2,-y+1 / 2,-z+1$; ii) $-x+1 / 2, y-1 / 2,-z+1 / 2$; iii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; iv) $-x+1,-y+$ $1,-z+1$.

dimethylarsinic acid

Crystal data

$\left[\mathrm{As}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}(\mathrm{OH})\right]$

$$
F(000)=544
$$

$M_{r}=138.00$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=15.764$ (9) \AA
$b=6.494(5) \AA$
$c=11.302(4) \AA$
$\beta=125.86(3)^{\circ}$
$V=937.7(10) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.608, T_{\text {max }}=1.000$
7792 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.055$
$S=1.20$
1166 reflections
49 parameters
0 restraints
$D_{\mathrm{x}}=1.955 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=468-469 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$
Cell parameters from 6920 reflections
$\theta=2.2-28.4^{\circ}$
$\mu=7.09 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Block, colourless
$0.49 \times 0.42 \times 0.39 \mathrm{~mm}$

1166 independent reflections
1117 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-20 \rightarrow 20$
$k=-8 \rightarrow 7$
$l=-15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0242 P)^{2}+1.2973 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.80$ e \AA^{-3}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
As1	$0.338221(14)$	$0.33757(3)$	$0.373791(19)$	$0.01723(9)$
O1	$0.37470(13)$	$0.5820(2)$	$0.44526(17)$	$0.0268(3)$
H1	0.3510	0.6676	0.3770	0.040^{*}
O2	$0.20889(12)$	$0.3139(2)$	$0.27582(18)$	$0.0260(3)$
C1	$0.4078(2)$	$0.1666(3)$	$0.5414(3)$	$0.0293(5)$
H1A	0.3803	0.1934	0.5985	0.044^{*}
H1B	0.4830	0.1961	0.6013	0.044^{*}
H1C	0.3961	0.0218	0.5113	0.044^{*}
C2	$0.38735(18)$	$0.2918(4)$	$0.2580(2)$	$0.0270(4)$

supplementary materials

H2A	0.3738	0.1485	0.2243	0.041^{*}
H2B	0.4628	0.3188	0.3162	0.041^{*}
H2C	0.3509	0.3843	0.1734	0.041^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
As1	$0.01664(13)$	$0.01855(13)$	$0.01733(13)$	$0.00089(6)$	$0.01041(10)$	$-0.00034(6)$
O1	$0.0276(8)$	$0.0202(7)$	$0.0229(7)$	$-0.0003(6)$	$0.0092(6)$	$-0.0043(6)$
O2	$0.0164(7)$	$0.0298(8)$	$0.0314(8)$	$-0.0006(6)$	$0.0137(7)$	$-0.0059(6)$
C1	$0.0327(12)$	$0.0311(12)$	$0.0269(11)$	$0.0066(9)$	$0.0189(10)$	$0.0092(8)$
C2	$0.0269(11)$	$0.0353(11)$	$0.0279(10)$	$-0.0045(9)$	$0.0211(9)$	$-0.0053(9)$

Geometric parameters ($\AA,^{\circ}$)

As1-O2	1.6617 (19)	C1-H1B	0.9800
As1-O1	1.7201 (19)	C1-H1C	0.9800
As1-C2	1.895 (2)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9800
As 1-C1	1.895 (2)	C2-H2B	0.9800
$\mathrm{O} 1-\mathrm{H} 1$	0.8400	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
C1-H1A	0.9800		
? \cdots ?	?		
$\mathrm{O} 2-\mathrm{As} 1-\mathrm{O} 1$	109.90 (8)	As1- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
O2-As1-C2	111.32 (10)	H1A-C1-H1C	109.5
O1-As1-C2	108.04 (9)	H1B-C1-H1C	109.5
O2-As1-C1	112.19 (10)	As1-C2-H2A	109.5
O1-As1-C1	103.46 (10)	As1-C2-H2B	109.5
C2-As1-C1	111.56 (11)	H2A-C2-H2B	109.5
As $1-\mathrm{O} 1-\mathrm{H} 1$	109.5	As1-C2-H2C	109.5
As1-C1-H1A	109.5	H2A-C2- H 2 C	109.5
As1-C1-H1B	109.5	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
H1A-C1-H1B	109.5		
?-?-?-?	?		

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.69	$2.528(2)$	172
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.98	2.52	$3.481(3)$	167
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.98	2.48	$3.354(3)$	148

Symmetry codes: (i) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (ii) $-x+1 / 2,-y+1 / 2,-z+1$; (iii) $-x+1,-y+1,-z+1$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2504).

